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The rcstrictcd four-body problem (point maws) is considered, in order to investigate whether two small bodies can move in 

quasi-circular orbit\ in the gravitational lield of two larpc bodies. This problem may bc of intcrcst in the context of the dynamics 
of asteroid systems. 0 200.3 Elsevicr Ltd. All rights rcscwcd. 

I. A. Yu. ISHI.INSKII’S FORMULATION OF THE PROBLEM 

In a talk with the present author, A. Yu. Ishlinskii posed the following problem (Fig. 1): “Two bodies, 
each of the same mass M, attracting one another, are moving in circular orbits. Suddenly, two small 
bodies appear, each of the same mass nz, which have initial conditions such that, were it not for the 
bodies M, they would also move in a circular orbit. The interaction is Newtonian. What disturbances 
will the bodies M introduce into the motion of the bodies m?” 

7 FORMULATION OF THE PROBLEM -. 

Let us assume that m G M and formulate the restricted problem of celestial mechanics, assuming that 
the bodies m attract one another and the bodies M but do not affect the circular motion of the bodies 
M; the bodies M also attract one another. 

Let the distance between the bodies M be a. Expressing all distances in units of a, we introduce the 
dimensionless time T = wf, where u = d2Mfa-‘!’ is the angular velocity of the bodies M. In the 
dimensionless variables thus introduced, the equations of motion in a system of coordinates rotating 
together with the bodies (see Fig. 1) have the form (the two-dimensional case) 

x”L2y’ = aw ’ c 1 ax; 
aw i=12 yy+2x, = ayi, 1 

(2.2) 

where r,, and r,2 are the distances from the small bodies (i = 1,2) to the large ones, and p is the distance 
between the small bodies. The system of equations (2.1) is of the eighth order - a problem with four 
degrees of freedom. 

3. SYMMETRIC TRAJECTORIES 

However, we shall not consider the general problem (2.1), (2.2), but the problem formulated in 
Section 1. Somewhat generalizing that formulation. we shall consider trajectories which satisfy symmetric 
initial conditions 

ry = -ry, I;; = -ii (3.1) 

where r:’ and t-y are the initial positions of the small bodies relative to the origin, and fy and i’: are 
their respective velocities. 
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Fig. 1 

It follows directly from the equations of motion (2.1) (2.2) that symmetric trajectories exist satisfying 
conditions (3.1) and Eqs (2.1) and (2.2) 

r,(f) = -r*(j) (3.2) 

In what follows we shall concern ourselves only with such trajectories. 
For symmetric trajectories (3.2) the order of system (2.1) is halved (the problem with hvo degrees 

of freedom). The equations of motion become 

iv - 2yl = a w/ax, y*q + 2d = a wiay 

w = 4+! ‘+1 +P 
2 ( 1 2 r, r2 r’ 

p’; (3.3) 

r=,Jm, r,=.jw, r2=Jm 

where r is the dimensionless distance from the origin to one of the “small” point masses, rl and rl are 
their respective distances to the “large” point masses. 

Equations (3.3) have a first integral 

;t XV2 + y’2) - w = -c 

from which it follows that the actual motion takes place in the domain 

W2C 

and is bounded by surfaces of zero velocity W = c. 
Before constructing the surfaces of zero velocity, we will consider the points of libration of problem 

(3.3). These points correspond to solutions of the system of equations 

awax = 0, awiay = 0 
or, in explicit form: 

(1) the points L, and L2 with coordinatesy, = y3 = (),x1 = --x1, wherexi (x3 > l/2) satisfy the equation 

x3 - (xi + l/4)/& - l/4)* - p/X: = 0 

(2) the points Ll and Li with coordinates yl = y3 = 0, xi = -.x: = -x*, where X, (0 < X, < l/2) 
satisfy the equation 
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x3*(1 +(1/4-X:)2) = p(1/4-&* 

(3) the points LJ and L5 with coordinatesx 4 = x5 = O,ys = -y+ whereyj (yJ > 0) satisfy the equation 

2 3/2 
y:((1/4+y;)3’2-l) = P(1/4+y,) 

whence, among other things, it follows that y4 > &/2. 
Where p = 0 Eqs (3.3) become the equations of the restricted three-body problem where the two 

attracting bodies have the same mass. Correspondingly, the points Ll and L2 contract as I3 + 0 to the 
point L,(O, 0) and the points LT (i : 1, . , 
body problem (for example, y3 > 4312, etc.). 

5) become the points of libration of the restricted three- 

The zero velocity surface W = c of problem (3.3) is shown qualitatively in Fig. 2. As an example, the 
domain of possible motions W b cz is shown hatched, where c1 is a value of the constant c such that 
the surface W = c1 passes through the points of libration Ll and Li. 

If c > cl, the motion never lcaves some neighbourhood D of the origin, or does not leave a certain 
neighbourhood of one of the points h/l, or. at very large initial distances from the origin, always remains 
at a considerable distance from it. 

If c’ is somewhat smaller than c?, then a point, having begun to move in the neighbourhood of the 
origin, may proceed, through a “throat” in the neighbourhood of Lt (L& to move in the neighbourhood 
of one of the points M, then the revcrsc, etc. 

A value of c = ctj exists such that the surface W = cl3 passes through the points of libration L1 3. If 
(‘ -c c’13. the domain of possible motions W > c is unbounded: motion through the “throat” in 
neighbourhood of the points L ,, j may depart as far from the origin as desired, even if it began in the 
neighbourhood of the origin. If c = ct3, the parts of the surface W = c merge at the points L1 and L+ 

The surface W = c? is of crucial importance for our problem. The initial motion remains in the 
neighbourhood D of the origin if it began there with initial conditions such that c b c?. The motion 
will then never lcave the domain D: W 2 c2 (Fig. 2). This domain is bounded by a certain oval on which 
the largest value of the co0rdinates.u is x:): = L:. Approximate calculation shows that 

In that case 
X* = (/3/17)“‘= 0.389$‘3 (3.4) 

2 
x* + 2 

(‘2 = P -+- 
2 1-4x; x* 

(3.5) 
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or, approximately 

c* = 2 + ;, 17p*)ln (3.6) 

and the maximum of the coordinatey, on the boundary of the domain is determined by the conditions 

172 y*+p; ;-.-” = z 3 *71/3 

so that 

Y* = 0.245 $I3 (3.7) 
Thus, we have the following partial answer to the question posed in Section 1. 
If the symmetric initial conditions are such that the value of the constant of the Jacobi integral is 

c 2 c2, where c2 is defined by (3.5) or (3.6) then the motion will always remain in the neighbourhood 
D of the origin defined by D: W 2 c 3 c?. The maximum dimensions of the domain D are determined 
by the dimensional values of the coordinates X, y: 

x max = 0.1945ac~“~, y,,, = 0.1225~~~“~; 01 = m/M (3.8) 

As an approximation, we can assume that the domain D is an ellipse with semi-axesx,,, andy,,,. This 
is the situation for any symmetric (not necessarily circular) initial data. 

4. THE CASE OF CIRCULAR INITIAL DATA 

It will now be useful to consider the situation for circular initial data, corresponding to the original 
formulation of the problem (Section 1). In that case 

II;?, = P 2 
(i ) 6 7 ro (4.1) 

and accordingly 

(4.2) 

The upper sign corresponds to “forward” motion and the lower one to “reverse” motion (relative to 
the direction in which the points it4 are moving). The necessary conditions for the motion to be bounded 
(motion in the domain D) are 

c* 2 c* (4.3) 

All other conditions being equal, the “reverse” motion is “less stable” than forward motion, since in 
reverse motion condition (4.3) is readily violated because c_ < c+. 

Up to the leading terms of the expansion 

c,=2+8x;-4y;+%fio 
2r0 

Taking relations (3.6), (4.3) and (4.4) into consideration, we observe that the domain in which condition 
(4.3) is satisfied is bounded by the surface (or surfaces) 

Defining 

8X;-4y;+%flo = !(17p2)1’3 
2r0 2 (4.5) 

x0 = xofP3, Yo = YoP3 

from Eqs (4.5) we obtain equations in the normalized variables X0 and To: 

Estimative investigation of the surfaces (4.5) shows that they are ovals with the following semi major 
axes: 
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for forward motion 
xOmax = 0.38x,, yOmax = 0.36x, (4.7) 

for reverse motion 
xOmax = 0.3 1 x.+, yOmax = 0.29.x, (4.8) 

The value of x, is defined by (3.4). 
Thus, if the initial data are circular and the motion is linear, it will never leave the domain D (an 

oval with semi-axes (3.8)) provided that the initial coordinates lie within the surface (4.5) -with the 
plus sign before the radical on the left. This surface is an oval with semi-axes 

XL = 0.074acP3, y’,,, = 0.070aa”3 (4.9) 

An analogous conclusion holds for reverse circular motions, except that the semi-axes of the corresponding 
oval have values 

x “lax = O.O60acr”“, y,,, = 0.056ac~t’~ (4.10) 

5. WEAKLY PERTURBED MOTION 

Let a/2 = R be the distance from the origin to one of the points M (see Fig. 1). The domain D is an 
oval with semi-axes 

X max = 0.389Rdi3, y,,,, = 0.245Ra’13 

We introduce two spheres with radii 
(5.1) 

r+ = 0.140Rc~“~, r_ = 0.112Rc~“~ (5.2) 
It is clear from the foregoing that, if that initial motion is circular forward motion and the initial value 

is r = r, s r+, then the motion will always take place inside the domain D. We shall call such motion 
weakly perturbed. But if r, > r+ (more precisely, if r0 > O.l48Ra”“), then “anything can happen”: the 
motion may leave the domain D, move into a neighbourhood of the points M, turn back, etc. 

If the motion is not weakly perturbed, we shall say that it is strongly perturbed. 
In exactly the same way, reverse circular motion will be weakly perturbed for r0 G r- and strongly 

perturbed for r. > 0.120Ra”” (it is implicitly assumed that r. is not too large: it is quite obvious that, 
if r. P R, circular motion will be weakly perturbed, as in the “external version” of the restricted three- 
body problem). 

Weakly perturbed motion is conveniently studied using, instead of the function W, a certain equivalent 
function containing only the leading terms of the expansions of the quantities r-7’ and r;‘. Apart from 
an additive constant, one then has 

172 72 p 
w = TX -2y +- 

r 
The equations of motion become 

XI’ - 2y’ = 17x PX - 
312’ 

y” + 2x’ = - 7y PY - 
(x2+y 2 ) (x2+y 2 ) 312 

(5.3) 

(5.4) 

Normalizing the Cartesian coordinates 

x = q-p3, y = yfp3 
we reduce Eqs (5.4) to the form 

X’I - 2y’ + x = 0, y”+2x’+ y = 0; r3 = (~‘+y~)~‘~ (5.5) 

where, for brevity, we have omitted the bar in the notation of the normalized coordinates. Note that 
in weakly perturbed motion it is invariably true that l/r’ > 17. 

Changing in Eqs (5.5) to polar coordinates 

x = rcost$, y = rsin$ 



496 

we obtain 
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t-“-r(t)‘+ l)‘+L = r(16cos*Q-8sin*Q) 
r* 

frr2($’ + I) = -24r*cos~sin@ 

Of course, Eqs (5.6) have a first integral 

;( f2 r +r2Q12)-~-~r2~~~2$+~r2~i*2$ = --c 

(5.6) 

(5.7) 

The quantity 9’ + 1 is the angular velocity in absolute motion. Since we are considering weakly 
perturbed motion, it follows that @ is a fast phase ([@‘I % 1) and, to a certain approximation, system 
(5.6) can be replaced by the system averaged over the fast phase 

r” - r($’ + 1 )* + 1 
r* 

= 4r, r*(Q’+ 1) = r&lo (5.8) 

where r,, is the radius of the unperturbed orbit and ct.+) is the absolute angular velocity in the unperturbed 
orbit (which may have a plus or minus sign). 

It follows from system (5.8) (noting that 0; = l/r;) that 

r”+L-‘o-4r = 0 
r* r3 

By (5.9), a small deviation 6r from the initial circular orbit will satisfy the equation 

(6r)” + R26r = 4r,, Q* = “i-4 = A-4 (5.10) 
r0 

Perturbations and motions due only to the effect of the outer masses M are evaluated by integrating 
Eqs (5.10) with initial conditions 6r i = 0,&h = 0. It then turns out that 

8r0 R 6r = ,62sin-r 
R- 2 

(5.11) 

Of course, this formulation only holds over a bounded time interval. 
Formula (5.11) describes very small perturbations: &/r,, = 1U3. At the same time, it follows from 

accurate estimates that the condition h/r,, = 1 is not violated. 

Remurks. 1. The above analysis only describes the situation within the set of symmetric trajectories, without 
touching no more general questions, such as the stability or instability, in some scnsc. of the set of symmetric 
trajectories to arbitrary asymmetric perturbations of the initial data. 

2. This paper was first published in a collection of papers [ 11 which is accessible only with difficulty. In the light 
of recent astronomical discoveries of systems of dual asteroids [2] (not excluding systems with a larger number of 
asteroids), the papers has acquired rencwed interest. 

I am grateful for the contributions of A. A. Savchenko and N. N. Shcherbakova to the final form of 
this paper. 

This research was supported by the Russian Foundation for Basic Research of the Office of Scientific- 
Technical Cooperation (0 I-O l-0200 I ) and the Russian Foundation for Basic Research (0 1-O I-00508). 


